(Page 1 of 2)

State of California AIR RESOURCES BOARD

EXECUTIVE ORDER D-420 Relating to Exemptions Under Section 27156 of the Vehicle Code

ENGINE CONTROL SYSTEMS LTD. "PURIMUFFLER"

WHEREAS, Vehicle Code Sections 27156 and 38391, and Title 13, California Code of Regulations (hereafter "CCR") Section 2222, authorize the California Air Resources Board (ARB) and its Executive Officer to exempt add-on and modified aftermarket devices from the prohibitions of Vehicle Code Section 27156.

WHEREAS, Engine Control Systems Ltd. of 165 Pony Drive, Newmarket, Ontario, Canada L3Y7V1, has applied to the ARB for exemption from the prohibitions in Vehicle Code Sections 27156 and 38391 for their "Purimuffler" system for installation on 1990 and older model-year Detroit Diesel Corporation (DDC) heavy-duty two-stroke diesel engines for urban bus applications.

WHEREAS, pursuant to the authority vested in the Executive Officer by Health and Safety Code Section 39515 and in the Chief, Mobile Source Operations Division by Health and Safety Code Section 39516 and Executive Order G-45-9, the ARB finds that the above "Purimuffler" complies with the California Vehicle Code Section 27156 and Section 2222 of Title 13, California Code of Regulations. Exemption of the "Purimuffler", is based on testing conducted by the Southwest Research Institute, San Antonio, Texas, and Mobile Source Emissions Division of Environment Canada.

IT IS HEREBY RESOLVED that the "Purimuffler" is exempt from the prohibitions in Vehicle Code Section 27156 for installation on 1990 and earlier model-year DDC heavy-duty two-stroke diesel engines for urban bus applications subject to the following conditions:

- No changes are permitted to the "Purimuffler" as described in the original application for exemption. Any changes to the "Purimuffler", the installation instructions, or any of its components, and other factors addressed in this order must be evaluated and approved by the ARB prior to marketing in California.
- 2. Marketing of the "Purimuffler" using identification other than those shown in this Executive Order or the original submittal, or marketing of the "Purimuffler" for application other than the one listed in this Executive Order shall be prohibited unless prior approval is obtained from the ARB. Exemption of this product shall not be construed as an exemption to sell, offer for sale, or advertise any components of the "Purimuffler" as individual devices.
- 3. Any oral or written references to this Executive Order or its content by Engine Control Systems Ltd., its principals, agents, employees, distributors, dealers, or other representatives must include the disclaimer that the Executive Order or the exemption it provides is not an endorsement or approval of any emissions reduction claims for the "Purimuffler" and is only a finding that the "Purimuffler" is exempt from the prohibitions of Vehicle Code Section 27156.
- 4. Upon installation, the Purimuffler carries a warranty for 100,000 miles provided that it is installed in accordance with the installation instructions provided by Engine Control Systems Ltd.

ENGINE CONTROL SYSTEMS LTD. "PURIMUFFLER"

EXECUTIVE ORDER D-420 (Page 2 of 2)

THIS EXECUTIVE ORDER DOES NOT CONSTITUTE A CERTIFICATION, ACCREDITATION, APPROVAL, OR ANY OTHER TYPE OR ENDORSEMENT BY THE AIR RESOURCES BOARD OF ANY CLAIMS OF THE APPLICANT CONCERNING ANTI-POLLUTION BENEFITS OR ANY ALLEGED BENEFITS OF THE "PURIMUFFLER".

Violation of any of the above conditions shall be grounds for revocation of this order. The order may be revoked only after ten day written notice of intention to revoke it, during which period the holder of the order may request in writing a hearing to contest the proposed revocation. If a hearing is requested, it shall be held within ten days of receipt of the request, and the order may not be revoked until a determination is made, after the hearing, that grounds for revocation exist.

Executed at El Monte, California, this 18 day

of yebruary 1997.

R.B. Summerfield, Chief Mobile Source Operations Division

南非

Emissions	HC	CO	NOx	CO2	PM	VOF	Non	SO4
(g/kW-hr)		e de Mideria. Ann	na fu Taxater, it i territori a pote				VOF	mg/
								<u>kW-hr</u>
Engine-Out								
Cold Start	0.829	4.913	7.428	779	0.637	0.118	0.519	2.8
Hot Start	0.453	4.457	7.983	764	0.525	0.144	0.381	2.9
Composite	0.507	4.523	7.903	767	0.542	0.142	0.400	2.9
With Converter Muffler								
Cold Start	0.023	3.206	7.111	806	0.532	0.059	0.473	4.0
Hot Start	0.025	3.200	7.759	769	0.422	0.049	0.373	7.2
Composite	0.012	3.205	7.666	775	0.438	0.050	0.388	6.8
Composite								
Percent Reductions	97.3%	29.1%	3.0%	-1.0%	19.2%	64.8%	3.0%	-234%

TABLE 5.HDTC Data for 1987 Cummins LT-A 10B; 179 kW @ 2100 rpmConverter Muffler 1.83m from turbocharger outlet

TABLE 6.HDTC Data for 1991 DDC 6V92TA DDEC II; 207 kW @ 2100 rpmConverter Muffler 1.83m from turbocharger outlet

Emissions	HC	CO	NOx	CO2	PM	VOF	Non	SO4
(g/kW-hr)	er (a						VOF	mg/
		·						kW-hr
Engine-Out								
Cold Start	0.495	1.791	6.550	964	0.244	0.081	0.163	na
Hot Start	0.578	1.568	6.644	922	0.227	0.079	0.148	
Composite	0.567	1.600	6.631	928	0.229	0.079	0.150	
With Converter Muffler								• •
Cold Start	0.150	0.808	6.453	972	0.192	0.038	0.154	na
Hot Start	0.192	0.472	6.546	921	0.168	0.035	0.133	
Composite	0.186	0.520	6.532	929	0.170	0.036	0.134	
Composite								2
Percent Reductions	67.1%	67.5%	1.5%	-0.1%	25.7%	54.4%	10.7%	na

na = not available

TABLE 7.	NY Composite Chassis Dynamometer Data for 1989 MCI Classic urban bus with
	6V92TA DDEC II; 189 kW @ 2100 rpm; Vehicle #8930

Emissions (g/km)		HC	CO	NOx	CO2	PM	SOF	Insol.	Fuel Use (km/L)
18500 km afte installation	T								
Baseline With Catalyst		1.91 1.31	3.47 2.30	11. 46 12.04	1795 1755	1.41 1.00	na	na	1.49 1.49
Reductions		31.4%	33.7%	-5.1%	2.2%	29.1%			0.0%

TABLE 8. NY Composite Chassis Dynamometer Data for 1984 GMC Classic urban bus with 1987 6V71N; 135 kW @ 2000 rpm; Vehicle #8423

<u>.</u>

Emissions (g/km)	HC	СО	NOx	CO2	PM	SOF	Insol.	Fuel Use (km/L)
3500 km after installation								
Baseline With Catalyst % Reductions	3.00 0.91 69.6%	22.72 4.23 81.4%	16.54 15.87 4.1%	1734 1666 3.9%	1.53 0.96 37.3%	na	na	1.51 1.61 6.6%

Emissions	HC	CO	NOx	CO2	PM	SOF	Insol.	Fuel
(g/km)								Use (km/L)
Oct./Dec. 1994								
Fresh Catalyst			· ·		}			
Baseline	1.45	2.00	7.85	1126	0.347	0.120	0.227	2.33
With Converter	0.07	0.06	8.28	1116	0.257	0.094	0.163	2.35
% Reductions	95.2%	97.0%	-5.4%	-0.9%	25.9%	21.6%	28.2%	0.9%
March, 1995								
After ca. 8000 km								
Baseline	1.62	2.18	7.85	1594	0.403	0.219	0.184	2.35
With Catalyst	0.15	0.09	8.23	1591	0.249	0.080	0.169	2.32
% Reductions	90.7%	95.9%	-4.8%	0.2%	38.2%	63.4%	10.9%	-1.2%
August, 1995								
After ca. 17500 km								
Baseline	1.16	2.19	8.25	1120	0.550	0.203	0.347	2.39
With Catalyst	0.18*	0.16	9.43	1152	0.348	0.043	0.305	2.34
% Reductions	84.5%	92.7%	-14.3%	-2.8%	36.7%	78.8%	12.1%	-2.1%

TABLE 9.CBD Chassis Dynamometer Average Data for 1992 International School Buses
with Navistar DT466; Vehicles # 1000 and #1001

TABLE 10.	New York Bus Cycle Chassis Dynamometer Average Data for 1992 International
	School Buses with Navistar DT466; Vehicles #1000 and #1001

Emissions	HC	CO	NOx	CO2	PM	SOF	Insol.	Fuel
(g/km)	ľ				-		-	Use
								(km/L)
Oct./Dec., 1994								
Fresh Catalyst								
Baseline	1.50	3.98	18.84	2011	0.732	0.285	0.447	1.31
With Converter	0.22	1.02	17.60	2012	0.581	0.194	0.387	1.32
% Reductions	85.3%	74.4%	6.6%	0.0%	20.6%	31.9%	13.4%	0.8%
March, 1995								
After ca. 8000 km								
Baseline	3.02	4.76	18.31	2039	0.962	0.538	0.424	1.28
With Catalyst	0.85	1.65	18.35	2032	0.553	0.130	0.423	1.30
% Reductions	71.9%	65.3%	-0.2%	0.3%	42.5%	75.8%	0.2%	1.6%
August, 1995								
After ca. 17500 km			[[1		
Baseline	2.74	4.81	19.10	2022	1.203	0.328	0.875	1.32
With Catalyst	0.84	2.39	20.46	2053	0.985	0.256	0.729	1.31
% Reductions	69.3%	50.3%	-7.1%	-1.5%	18.1%	22.0%	16.7%	-0.8%

Emissions	HC	CO	NOx	CO2	PM	SOF	Insol.	Fuel
(£/km)								Use (km/L)
Oct./Dec., 1994 Fresh Catalyst								
Baseline	0.97	1.88	8.35	1053	0.369	0.121	0.248	2.50
With Converter	0.19	0.44	8.66	1053	0.317	0.078	0.239	2.51
% Reductions	80.4%	76.6%	-3.7%	0.0%	14.1%	35.5%	0.5%	0.4%
March, 1995 After ca. 8000 km								
Baseline	1.69	2.20	8.30	1052	0.506	0.215	0.291	2.49
With Catalyst	0.24	0.63	8.73	1045	0.322	0.068	0.254	2.53
% Reductions	85.8%	71.4%	-5.2%	0.7%	36.4%	68.4%	12.7%	1.6%
August, 1995								
After ca. 17500 km								
Baseline	1.33	2.27	9.00	1050	0.709	0.285	0.424	2.54
With Catalyst	0.27	0.75	10.01	1044	0.463	0.069	0.394	2.57
% Reductions	79.7%	67.0%	-11.2%	0.6%	34.7%	75.8%	7.1%	1.2%

A-4

 TABLE 11.
 New York Composite Cycle Chassis Dynamometer Average Data for 1992

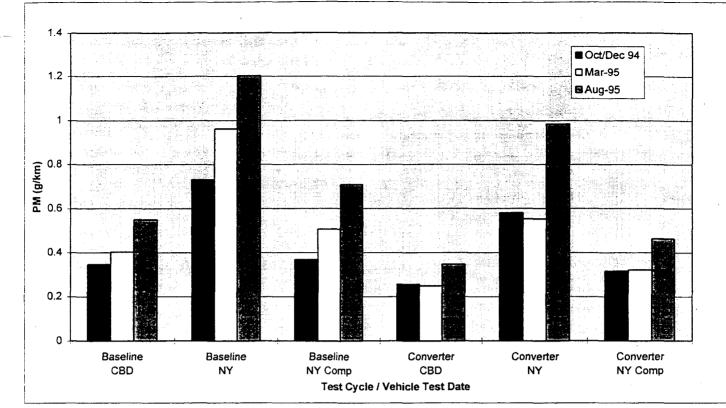
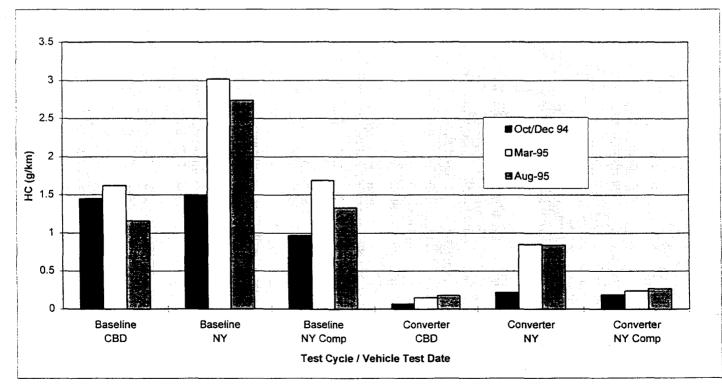

 International School Buses with Navistar DT466; Vehicles #1000 and #1001

TABLE 12. New York Composite Cycle Chassis Dynamometer Average Data for Various

Heavy Duty Trucks

Emissions	HC	CO	NOx	CO2	PM	SOF	Insol.	Fuel
(g/km)								Use
								(km/L)
1992 Mack MS250P								
Vehicles # 46121 and #26005								
May 1995: Fresh Catalyst								
Baseline	0.53	2.43	11.15	921	0.391	0.284	0.107	2.53
With Converter Muffler	0.16	0.92	11.60	910	0.228	0.111	0.117	2.59
% Reductions	69.8%	62.1%	-4.0%	1.2%	41.7%	60.9%	-9.3%	2.4%
August 1995:								
after ca. 12000 km								
Baseline	0.39	2.46	11.43	878	0.435	0.158	0.277	3.05
With Converter Muffler	0.11	1.22	12.21	895	0.235	0.059	0.176	3.00
% Reductions	71.8%	50.4%	-6.8%	-1.9%	46.0%	62.6%	36.5%	-1.6%
1994 International Series 4900								
Nov.1995:								
After 100hr thermal aging	ł							
Baseline	0.45	2.91	8.62	792	0.39	na	na	na
With Converter Muffler	0.39	1.19	8.70	755	0.24			
%Reductions	13.3%	59.1%	-0.9%	4.6%	38.5%			


na = not available at time of printing

A-5

Average PM Emissions over Various Chassis Test Cycles

Average HC Emissions over Various Chassis Test Cycles

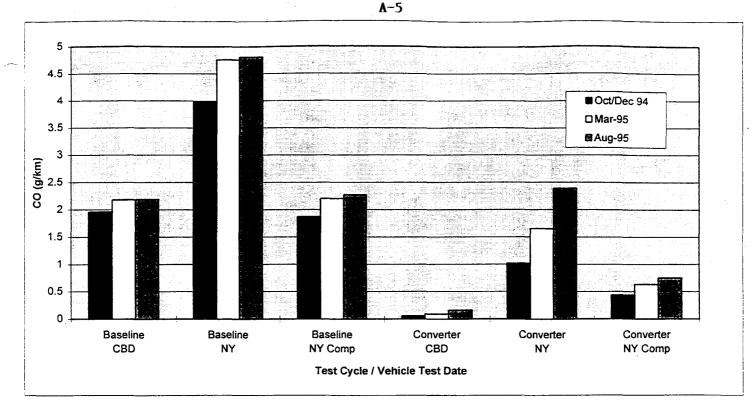


Figure 3: Average CO Emissions over Various Chassis Test Cycles

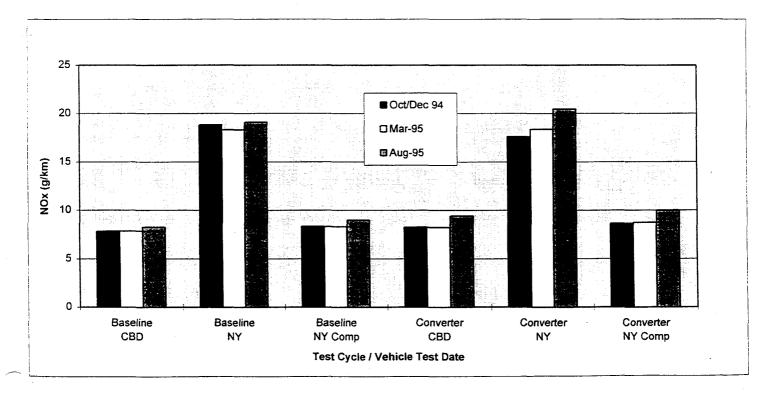


Figure 4: Average NOx Emissions over Various Chassis Test Cycles

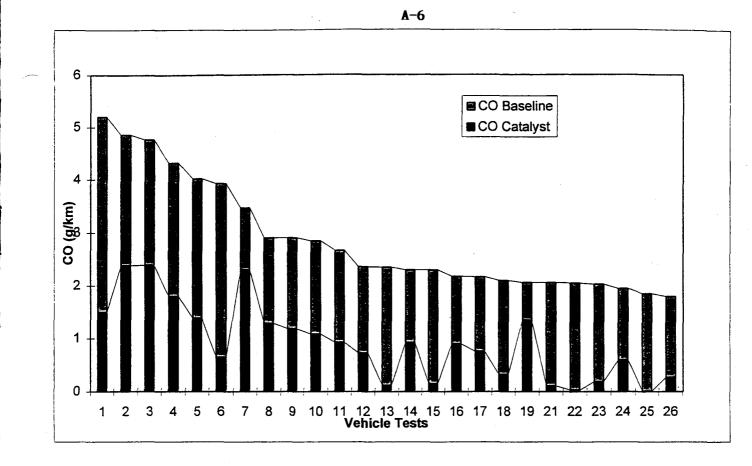


Figure 7: CO Emissions over all Chassis Test Cycles

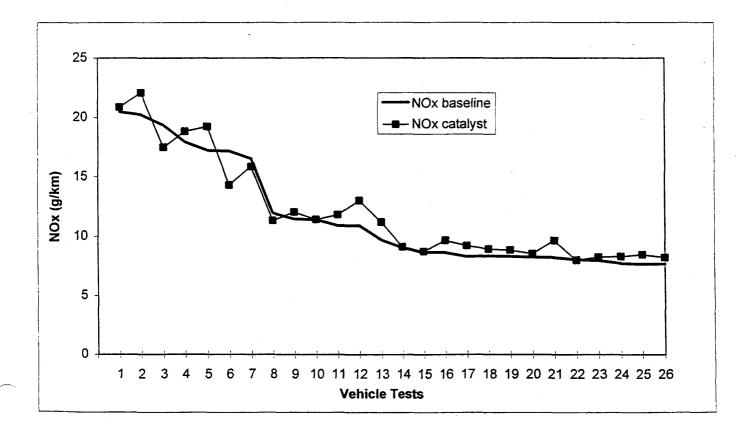


Figure 8: NOx Emissions over all Chassis Test Cycles

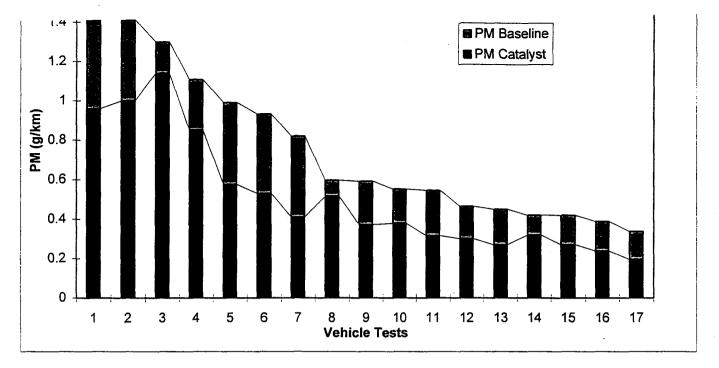


Figure 5: PM Emissions over all Chassis Test Cycles

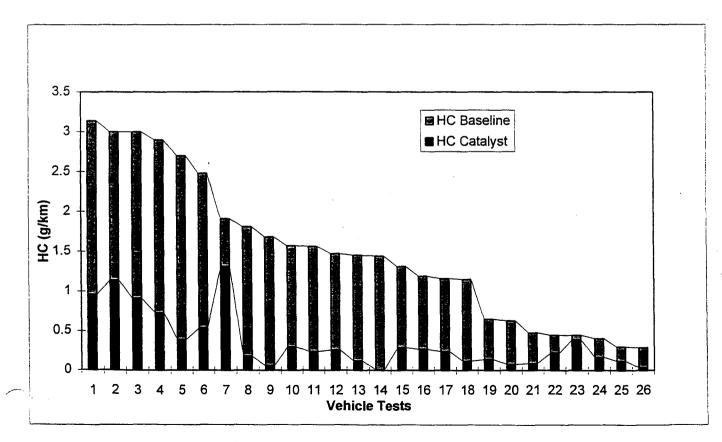


Figure 6: HC Emissions over all Chassis Test Cycles